If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+28y+96=0
a = 2; b = 28; c = +96;
Δ = b2-4ac
Δ = 282-4·2·96
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4}{2*2}=\frac{-32}{4} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4}{2*2}=\frac{-24}{4} =-6 $
| 7y=150+2y | | 5x+13=-47-6x | | F(x)=0.4x-5.2 | | 5(8y-2)=7-4(10y+8) | | 10m+6=24 | | 5^2x=8 | | x2+1/2x-3/4=0 | | 56+4x=8x+46 | | -13c+67=184 | | 25x^2-200x+16=0 | | x2+60x+800=0 | | 4x2-10=0 | | -4(8x-7)+18x=31x-2*(90+28x)-45 | | -2m=3m | | x2+13x-42=0 | | (7y+8)÷7=8 | | 7x-7=2+28 | | x2-18x-80=0 | | 4p-6=-2 | | x2+20x+60=0 | | 6x+(3x-17)=4x+3*(4x-1) | | 2z^2-8z-2=0 | | 10x-5+7x-10+8x=2x-6+4x-8 | | 2x+37=617 | | 3(3z-5)-5(2z-1)=4(2z-3)-17 | | 9x-1-14x+8=x-9+15x-1 | | F(x)=-0.01x+20 | | x1+7*x2=7 | | 2x-4-8x+9=10x-6+x-12 | | 3(2x=5)=27 | | x2+3x=-10 | | 16t^2+32t+4=0 |